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If we now consider the body forces per unit mass to be negligil-
ble, the Navier-Stokes equation (1u) becomes
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The first two of equations (17) yield
P="P (Z,t) (18)

that is, the pressure 1s, at most, a funetion of the z-coordi-
nate and time,

The three-dimensional continuity equation in cylindrical
coordinates can be written as
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at rar rang A2

Combining the previous conditions of constant density and zero
cross-flow with the continuity equation, we obtain
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Thus the velocity w along the longitudinal axis of the tube is
independent of the z-coordinate. Inserting this relation in
equation (17¢), we obtain
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For the case of laminar flow we consider the pressure along

the longitudinal axis of the tube to vary linearly from a
maximum value in the compression chamber to atmospheric pres-
sure at the terminal point of the tube. Therefore, if we

neglect end effects the pressure within the tube can be expressed
in terms of time and the coordinate z as
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where
L., . . 1s length of bore (see Fig, 8), in

Placing this expression for the pressure in equation (21), we
have
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The initial, final, and boundary conditions for the sub-
ject problem are

Initial condition: w(r,0) =0, 0 <r <R, (24)
Final condition: w(ir,=) =0, 0O<r <R, (25)

Boundary condition: w(Ro,t) =0, t 20 (26)

Equation (233 and the above boundary conditions constitute the
governing boundary value problem for determining the fluid
veloeity within the bore of the subject knock-off tube, We

now proceed to determine a particular solution of equation (23).

The homogeneous part of (23) is written as
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